Year 6 Maths Calculations Policies

NC Programme of study

- Pupils practice addition for larger numbers using the formal written method of column addition
- Solve addition one-step and multi-step
 problems in context

BY THE END OF YEAR 6.

By the end of Year 6, children will be able to show their understanding as:

| 30 | 24 | 3 | 2 | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| + | 107 | 0 | 9 | |
| 4 | 1 | 3 | 1 | 1 |
| | 1 | 1 | | |

2	0	6	.	0	3	5
+	1	0	.	1	2	4
	2	3	.	3	8	0
		2	.	8	0	0
3	4	2	.	3	3	9
	1	1		1		

Following on from Year 5...
Formal column addition for any number of values, with mixed decimal places
Children should continue to work in columns, for large numbers as well as those to several decimal places, in context where appropriate.

NC Programme of study

- Pupils practice subtraction for larger numbers using the formal written method of column addition
- Solve subtraction one-step and multi-step problems in context

BY THE END OF YEAR 6.

By the end of Year 6, children will be able to show their understanding as:

Following on from Year 5.
Formal column subtraction for any number of values, with mixed decimal places
Children should continue to work in columns, for large numbers as well as those to several decimal places, in context where appropriate. Children should be expected to make use of the inverse nature of addition and subtraction where appropriate.
E.g. Maximum crowd capacity at three American Football grounds are;

Stadium	Crowd capacity
Ohio	102329
Michigan	109901
Los Angeles Coliseum	93607

What is the difference between the numbers of seats available at each stadium?
E.g. Two numbers have a difference of 1.5803 . One of the numbers is 4.7218 . What is the other? is this the only answer? How could you find another solution?

4	.	7	2	1	8
-	$?$	$?$	$?$	$?$	$?$
1	.	5	8	0	3

- Multiply multi-digit numbers up to 4×2 digits whole number, using formal written method
- Multiply 1 d numbers with up to 2 decimal places by whole numbers

BY THE END OF YEAR 6

By the end of Year 6, children will be able to show their understanding as:

		4	2	7	6
\times			3	4	
\times					
	1	7	1	0	4
1	2	8	2	8	0
		2	1		
1	4	5	3	8	4
	1				

Following on from Year 5.
Column method for long multiplication

NC Programme of study

- Divide numbers up to 4×2 digits whole number, using formal written method
- Interpret remainders as whole numbers, fractions or by rounding - appropriate to context
- Divide numbers up to 4 digit by 2 digit using short and long divsion

BY THE END OF YEAR 6.

By the end of Year 6, children will be able to show their understanding as:
Divide 4 digit by 2 digit using multiple of the divisor method.
Divide 4 digit by 2 digit using short division method.

Dividing by a two-digit number

Following on from Year 5, children will now be confident using a compact layout for short division of a four-digit number by a single digit number. Where appropriate, children can continue to use this method when dividing by a two-digit number.

E.g.			0	4		5
				4		
	1	1	4			5

More complex division

Often the numbers involved in a division calculation will determine an appropriate method.

Children should be encouraged to draw upon known facts, and establish what they already know about the divisor. This can be recorded in a 'toolbox' to support, if necessary.
E.g. $420 \div 15$

The chosen multiples of the divisor will depend on each child's known facts and their ability to manipulate these using doubling and halving skills. This needs to be carefully modelled.

A toolbox' is then used to complete the calculation.

$$
\begin{aligned}
& 15 \times 10=150 \\
& 15 \times 5=75 \\
& 15 \times 2=30
\end{aligned}
$$

Expressing remainders as decimals

When problem solving, children in Year 6 will need to select the appropriate way of representing remainders, according to the question being asked. They may need to round to the nearest whole number, round up to the next whole number or state how many of a given amount are 'left over'.

